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Abstract. Using the Multifractal Theory of Motion, the solutions of a 

Navier-Stokes stationary system at non-differentiable scale resolutions, are 

given. The solutions corresponding to such a system are non-linear, in the form 

of multifractal solitons and multifractal soliton-kink mixtures 
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1. Introduction 

 
Both in the context of Scale Relativity Theory (Nottale, 2011), as well 

as in the one of Multifractal Theory of Motion (Mercheș and Agop, 2016), 
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assuming that any physical system is equated both structurally and operationally 

to a multifractal object, said system’s dynamics can be outlined using motions 

of its structural units, dependent on the chosen scale resolution, on continuous 

but non – differentiable curves (multifractal curves). Since for a substantial 

temporal scale resolution in relation to the inverse of the largest Lyapunov 

exponent (Politi and Pikovsky, 2016), the deterministic bearings of any 

structural units belonging to the physical system, can be superseded by a bundle 

of potential (“virtual”) trajectories, the idea of certain trajectory can be 

substituted with the notion of probability density.  

With all of the above considerations taken into account, the 

multifractality expressed through stochasticity, in the expression of the 

dynamics of any physical system, becomes operational. This implies that, in the 

description of the dynamics of any physical system, instead of “operating” with 

a singular variable expressed through a precise non – differentiable function, it 

is feasible to “operate” only with estimations of said mathematical function, 

acquired by extracting their average values on various scale resolutions. 

Consequently, any variable purposed to describe the physical system dynamics 

will do as such, in the guise of being the limit of a cluster of mathematical 

functions, this serving as non – differentiable for null scale resolutions and 

differentiable in other cases (Nottale, 2011). 

 

2. Short Reminder on the Multifractal Theory of Motion 

 
The fundamental hypothesis of the Multifractal Theory of Motion 

postulates that the dynamics of any physical system are outlined by means of 

the multifractal curves. This induces several consequences (Nottale, 2011; 

Mercheş and Agop, 2016): 

(i) Any multifractal curve is expressly scale 𝛿𝑡 dependent. In detail, its 

length aims towards infinity when 𝛿𝑡 aims towards zero (Lebesgue theorem) 

(Mandelbrot, 1982). Additionally, the space develops into a multifractal, in the 

Mandelbrot sense; 

(ii) The dynamics of the physical system are related to the functionality 

of a bundle of functions during the zoom operation of 𝛿𝑡. Then, 𝛿𝑡 ≡ 𝑑𝑡 by 

means of the operation of the substitution principle; 

(iii) The dynamics of the physical structural units are expressed by 

means of multifractal variables. Then, two derivatives of the variable range 

𝑄 𝑡, 𝑑𝑡  can be defined: 
 

𝑑𝑄+

𝑑𝑡
= lim

∆𝑡→0

𝑄 𝑡, 𝑡 + ∆𝑡 − 𝑄(𝑡, ∆𝑡)

∆𝑡
, 

(1)  

𝑑𝑄−

𝑑𝑡
= lim

∆𝑡→0

𝑄 𝑡, ∆𝑡 − 𝑄 𝑡 − ∆𝑡, ∆𝑡 

∆𝑡
. 
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The sign “+” is linked to the forward processes, while the sign “−” is 

linked to the backward processes. 

(iv) The differential belonging to the spatial coordinate field takes the 

form: 

𝑑±𝑋𝑖 𝑡, 𝑑𝑡 = 𝑑±𝑥𝑖 𝑡 + 𝑑±𝜉 𝑡, 𝑑𝑡  (2) 

 

The differentiable part 𝑑±𝑥𝑖 𝑡  is independent of the scale resolution, 

but the non – differentiable part 𝑑±𝜉 𝑡, 𝑑𝑡  is dependent of the scale resolution. 

(v) The non – differentiable part of the spatial coordinate range fulfills the 

non – differentiable equation 

 

𝑑±𝜉𝑖 𝑡, 𝑑𝑡 = 𝜆±
𝑖  𝑑𝑡 

 
2

𝑓 𝛼 
 −1

 (3) 

 

where 𝜆±
𝑖  are constant coefficients linked to differentiable – non – differentiable  

shift, 𝑓(𝛼) is the singularity spectrum of magnitude𝛼 of fractal dimension and 𝛼 

is the singularity index. A multitude of modes exists, and as such, a diverse 

assortment of definitions concerning fractal dimensions: more to the point, the 

fractal dimension as defined by Kolmogorov, the fractal dimension as defined by 

Hausdorff – Besikovici etc. (Mandelbrot, 1982). Picking out one such function 

and “working” in the physical system, the value of the fractal dimension has to be 

constant and arbitrary for the totality of the dynamical analysis. For instance, it is 

frequently encountered that 𝐷𝐹 < 2 for correlative physical processes, 𝐷𝐹 > 2 for 

non – correlative physical processes etc. In such a context, by employing (3), 

there is a possibility to discern not just the “areas” of the physical system 

dynamics that are described through a particular fractal dimension, but also the 

range of “areas” for which their fractal dimensions are positioned in an interval of 

values. Moreover, by means of the singularity spectrum 𝑓(𝛼), it is possible to 

distinguish classes of universality in the physical system dynamics laws, even in 

the case where regular or strange attractors display various aspects (Agop and 

Mercheş, 2019). 

(vi) The differential time reflection invariance of any one variable is 

retrieved with the help of the operator: 

 

𝑑 

𝑑𝑡
=

1

2
 
𝑑+ + 𝑑−

𝑑𝑡
 −

𝑖

2
 
𝑑+ − 𝑑−

𝑑𝑡
 .  (4) 

 

This is an innate result of Cresson’s theorem (Nottale, 2011). Using the 

operator (4) to 𝑋𝑖 , the complex velocity field is obtained: 

 

𝑉 𝑖 =
𝑑 𝑋𝑖

𝑑𝑡
= 𝑉𝐷

𝑖 − 𝑉𝐹
𝑖   (5) 
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with 

𝑉𝐷
𝑖 =

1

2

𝑑+𝑋𝑖 + 𝑑−𝑋𝑖

𝑑𝑡
, 𝑉𝐹

𝑖 =
1

2

𝑑+𝑋𝑖 − 𝑑−𝑋𝑖

𝑑𝑡
, 𝑖 = 1,2,3 (6) 

 

The real part of 𝑉𝐷
𝑖   is independent with respect to the scale resolution, 

while the imaginary one 𝑉𝐹
𝑖 is dependend with respect to the scale resolution. 

(vii) Because multifractalization involves stochasticization (Nottale, 

2011), the whole statistic “collection”, found as averages, variances, 

covariances etc., manifests operationally. As such, let the functionality linked to 

the average of 𝑑±𝑋𝑖be described as: 

 

 𝑑±𝑋𝑖 ≡ 𝑑±𝑥𝑖 ,    (7) 

with 

 𝑑±𝜉𝑖 = 0,   (8) 

 

The above relation (8) asserts that the average related to the non – 

differential part belonging to the spatial coordinate field is null. 

(viii) The physical system dynamics can be expressed by means of the 

scale covariant derivative stated by the operator (9) and (10): 

 

𝑑 

𝑑𝑡
= 𝜕𝑡 + 𝑉 𝑖𝜕𝑖 +

1

4
(𝑑𝑡)

 
2

𝑓 𝛼 
 −1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘 , (9) 

where 

 

𝐷𝑙𝑘 = 𝑑𝑙𝑘 − 𝑖𝑑 𝑙𝑘 , 𝑑𝑙𝑘 = 𝜆+
𝑙 𝜆+

𝑘 − 𝜆−
𝑙 𝜆−

𝑘 , 𝑑 𝑙𝑘 = 𝜆+
𝑙 𝜆+

𝑘 + 𝜆−
𝑙 𝜆−

𝑘  (10) 

 

For physical Markov – type stochastic processes, 

 

𝜆+
𝑖 𝜆+

𝑙 = 𝜆−
𝑖 𝜆−

𝑙 = 2𝜆𝛿𝑖𝑒 ,  (11) 

 

and for 

𝑓 𝛼 ≡ 𝐷𝐹 (12) 

 

where 𝜆 is a specific coefficient linked to the fractal – non – fractal shift, the 

scale covariant derivation becomes: 

 

𝑑 

𝑑𝑡
= 𝜕𝑡 + 𝑉 𝑙𝜕𝑙 − 𝑖𝜆 𝑑𝑡 

 
2

𝐷𝐹
 −1

𝜕𝑙𝜕
𝑙 (13) 

 

When looking at the distinct case of motions on Peano – type curves, 

which implies 𝐷𝐹 = 2, the scale covariant derivative (13) can be expressed in 

the regular form, from the Scale Relativity Theory (Nottale, 2011): 
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𝑑 

𝑑𝑡
= 𝜕𝑡 + 𝑉 𝑙𝜕𝑙 − 𝑖𝐷𝜕𝑙𝜕

𝑙  (14) 

 

where 𝜆 ≡ 𝐷 is the diffusion coefficient linked to fractal – non – fractal shift. 

As such, this model capitalizes (in a general sense) all the results of Nottale’s 

theory (i.e. Scale Relativity Theory) (Nottale, 2011). 

Now, taking into account the functionality related to the scale 

covariance principle, i.e. employing the operator (9) for the complex velocity 

fields (5), in the lack of any external constraint, the following form related to 

the motion equations (i.e. the geodesics equation explained on a multifractal 

space) is expressed: 

 

𝑑 𝑉 𝑖

𝑑𝑡
= 𝜕𝑡𝑉 

𝑖 + 𝑉 𝑙𝜕𝑙𝑉 
𝑖 +

1

4
 𝑑𝑡 

 
2

𝑓 𝛼 
 −1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉 
𝑖 = 0, (15) 

 

This implies that the multifractal acceleration, 𝜕𝑡𝑉 
𝑖 , the multifractal 

convection, 𝑉 𝑙𝜕𝑙𝑉 
𝑖  and the multifractal dissipation 𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉 

𝑖 achieve their 

equilibrium in any point belonging to the multifractal curve. In particular, for 

(11) and (12), the motion Eq. (15) is expressed as: 

 

𝑑 𝑉 𝑖

𝑑𝑡
= 𝜕𝑡𝑉 

𝑖 + 𝑉 𝑙𝜕𝑙𝑉 
𝑖 − 𝑖𝜆 𝑑𝑡 

 
2

𝐷𝐹
 −1

𝜕𝑙𝜕
𝑙𝑉 𝑖 = 0 (16) 

 
3. Navier-Stokes-Type Equation at Non-Differentiable Scale 

 
By separating in the motion Eq. (16) the dynamics of any physical 

system, on scale resolutions, the following equations are obtained: 

 

𝜕𝑡𝑉𝐷
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐷
𝑖 −  𝑉𝐹

𝑙 + 𝜆 𝑑𝑡 
 

2

𝑓 𝛼 
 −1

𝜕𝑙 𝜕𝑙𝑉𝐹
𝑖 = 0 (17) 

 

at differentiable scale resolution, and: 

 

𝜕𝑡𝑉𝐹
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐹
𝑖 +  𝑉𝐹

𝑙 + 𝜆 𝑑𝑡 
 

2

𝑓 𝛼 
 −1

𝜕𝑙 𝜕𝑙𝑉𝐷
𝑖 = 0, (18) 

 

at non-differentiable scale resolution. 

Because in the dynamic analysis only the non-differentiable scale 

behaviors are of interest, then in the [(17), (18)] system of equations, the 

following condition must be imposed: 

 

𝑉𝐷
𝑖 = 0 (19) 
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Then, with these restraints, for any physical system with a constant state 

density  𝜑 = 𝑐𝑜𝑛𝑠𝑡. , in the static case, the Navier-Stokes-type system is 

obtained: 

 𝑉𝐹
𝑙 + 𝜆 𝑑𝑡 

 
2

𝑓 𝛼 
 −1

𝜕𝑙 𝜕𝑙𝑉𝐹
𝑖 ≡ 0 (20) 

 

𝜕𝑖𝑉𝐹
𝑖 = 0 (21) 

 

These differential equations written by means of dimensionless plane 

coordinates, with suitable initial and boundary conditions admit the following 

solutions (Agop and Mercheş, 2019): 

 

𝑈 =
1.5

 𝜈𝜉 
1

3

sech2  
0.5𝜂

 𝜈𝜉 
2

3

  (22) 

  

𝑉 =
1.9

 𝜈𝜉 
1

3

 
𝜂

 𝜈𝜉 
2

3

sech2  
0.5𝜂

 𝜈𝜉 
2

3

 − tanh  
0.5𝜂

 𝜈𝜉 
2

3

   (23) 

 

where 𝜉  and 𝜂  are nondimensional spatial coordinates, 𝑈  and 𝑉  are the 

nondimensional components belonging to the velocity field along the 𝑂𝜉 and 

𝑂𝜂 axes, and 𝜈 is the multifractality degree.  

As such, the velocity field along the 𝑂𝜉  axis is described by the 

multifractal soliton (14), while the velocity field along the 𝑂𝜂 axis is described 

by the multifractal soliton – kink (15).  

In such a context, when investigating the dynamic of a complex fluid 

expansion in a multifractal medium, there are two types of scales that need to be 

taken into account. Firstly, there are the internal interaction scales, which is an 

amalgam of dynamics induced by the properties of the complex fluid and by its 

nature. For example, if the complex fluid is considered as a multi element 

transient plasma (Irimiciuc et al., 2018), this scale will be dominated by 

collision, chemical processes, molecular formation, ionization processes, 

excitations etc. The external interaction scales contain the dynamic between the 

complex fluid and the multifractal medium in which the fluid is embedded. 

Keeping the same example as before for the plasma as a complex fluid, this 

scale can relate to the overall dynamics of the plasma, gas-plasma interactions 

or plasma confinement. These interactions can also be investigated on an 

interface separating the two fractal objects meaning one could potentially 

investigate just the double layer separating flowing transient plasma and the 

background gas and explore all the phenomena mentioned before.  

In the following, let the influence of the multifractality degree on each 

of the two components (U and V) of the complex fluid for a 2D flow be 
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explored. In Fig. 1 in 3D and contour plot are represented the velocity 

component (U) on the Oξ for three multifractality degrees (0.3, 1 and 3). For a 

low multifractality degree it is noticed a very directional flow mainly across the 

Oξ with little spatial expansion. The enhancement of the multifractality in the 

system leads to a decrease of the velocity and a strong lateral expansion. It is 

important to note that the main expansion direction does not change, only the 

contributions on the Oη direction. The multifractality degree of the system on 

this velocity component acts as multifractal-like dispersion phenomena. In Fig. 

2 in 3D and contour plot are represented the velocity component (V) on the Oη 

for three multifractality degrees (0.3, 1 and 3). Let it be noted that this 

component of the velocity is not influenced by the multifractality degree when 

investigating the absolute value of the velocity, thus remaining quasi constant. 

There is however a strong influence on the direction of the component. For a 

low multifractality degree there is a small angle with respect to the Oξ axis. 

Higher values of multifractality induce a change in the expansion angle 

transitioning towards higher angles. The multifractality degree of the complex 

fluid on this velocity component works towards the uniformization of the V 

component as the distribution tends to reach the maximum expansion velocity 

available for the complex fluid. 
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Fig. 1 ‒ 3D and contour plot representation of the velocity component on the Oξ for 

three multifractality degrees: a) 0.3, b) 1, and c) 3. 
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Fig. 2 ‒ 3D and contour plot representation of the velocity component on 

 the Oη for three multifractality degrees: a) 0.3, b) 1, and c) 3. 

 

Let it be noted that a multifractal minimal vortex can be associated to 

the velocity field given through (22) and (23): 

 

𝛺 =  𝜕𝜂𝑈 − 𝜕𝜉𝑉 =
0.57𝜂

 𝜈𝜉 2
+

0.63𝜉

 𝜈𝜉 
4

3

tanh  
0.5𝜂

 𝜈𝜉 
2

3

 +
1.9𝜂

 𝜈𝜉 2
sech2  

0.5𝜂

 𝜈𝜉 
2

3

 

−
0.57𝜂

 𝜈𝜉 2
tanh2  

0.5𝜂

 𝜈𝜉 
2

3

 −  
1.5

𝜈𝜉
+

1.4𝜂

𝜉 𝜈𝜉 
5

3

 sech2  
0.5𝜂

 𝜈𝜉 
2

3

 tanh  
0.5𝜂

 𝜈𝜉 
2

3

  

(24) 

 
In Fig. 3 are presented the 3d and contour plots of the multifractal 

minimal vortex. 
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Fig. 3 ‒ 3D and contour plot representation of the multifractal minimal vortex 

 or three multifractality degrees: a) 0.3, b) 1, and c) 3. 

 
4. Conclusions 

 

As such, the multifractal soliton (22) and the soliton-kink multifractal 

mixture (23) are liable, by means of the multifractal minimal vortex (24), for the 

management of turbulences at non-differentiable resolutions of scale. Despite 

the fact that they are non-manifested when referring to differentiable scale 

resolution, these turbulences have the potential to become manifest at the same 

scale by means of the “synchronization” (self-structuring) of multifractal 

minimal vortices in the form of vortices streets. 
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DINAMICI LA SCARĂ NEDIFERENŢIABILĂ ÎN 

 TEORIA MULTIFRACTALĂ A MIŞCĂRII 

 

(Rezumat) 

 

 

Utilizând Teoria Multifractală a Mișcării, se obţin soluții ale unui sistem de 

ecuaţii diferenţiale de tip Navier-Stokes staționar, la rezoluție de scară nediferențiabilă. 

Soluțiile unui asemenea sistem sunt puternic neliniare, de forma solitonului multifractal 

și mixturii soliton – kink multifractal. 
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